EC/EE-207

COMPLEX AND NUMERICAL ANALYSIS

L T P C 3 1 - 3

COURSE OBJECTIVES:

- 1. To provide knowledge on complex analysis.
- 2. To provide knowledge on complex integration.
- 3. To provide knowledge on singularities, poles and residues.
- 4. To provide knowledge on numerical solution of ordinary differential equations.
- 5. To provide knowledge on numerical solution of partial differential equations.

COURSE OUTCOMES:

After successful completion of the course, the students are able to

- 1. demonstrate knowledge on Complex Functions, Complex Integration, Taylor's and Laurent's expansions, Ordinary Differential Equations, Partial Differential Equation.
- 2. evaluate complex line integrals with the help of Cauchy's integral theorem, Cauchy's integral formula.
- 3. apply Cauchy-Riemann equations and harmonic functions to problems of fluid mechanics, thermodynamics and electro-magnetic fields.
- 4. find numerical solution of ordinary differential equations and Partial Differential Equation.
- 5. solve integral functions using Cauchy's residue theorem to find residues.

UNIT I

Complex Functions :

Introduction - Derivative of complex function - Analytic functions - The necessary and sufficient conditions for the analyticity of the function (without proof) - Cauchy-Riemann equations in polar form - Harmonic functions.

Milne-Thomson method, orthogonal system.

UNIT II	(12)
Complex Integration : Complex integration - Line integrals	
Cauchy's integral theorem, Cauchy's integral formulae.	
UNIT III	(12)
Series and Residues:	
Taylor's and Laurent's expansions (without proofs).	
Singularities - Poles and Residues - Cauchy's residue theorem (without proof).	
UNIT IV	(12)
Numerical Solutions of Ordinary Differential Equations (First order) :	
Solution by Taylor's series - Picards method.	
Euler's method - Runge-Kutta method of fourth order.	
UNIT V	(12)
Numerical Solutions of Partial Differential Equation :	
Classification of Partial differential equations of the second order - Laplace-s equation.	

Poisson's equation.

(12)

LEARNING RESOURCES:

TEXT BOOK(s):

B.S.Grewal - Higher Engineering Mathematics, Khanna publishers, 40th edition, 2007.

REFERENCE BOOK(s):

Erwin Kreyszig - Advanced Engineering Mathematics, 8th edition, New Age International (P) Ltd., 2007.

WEB RESOURCES:

http://nptel.iitm.ac.in/courses/